
Methods
Hair beds.Hair beds are fabricated based on a previously published protocol45. In
short, we cut a hexagonal array of holes in a clear acrylic sheet using a laser cutter
(VersaLaser, Universal Laser Systems) and cast with polydimethylsiloxane
elastomer (Dow Corning; E=2MPa). Hairs have length L=3.1–5.6mm, diameter
2a⇡0.29mm, and hair separation �=0.50–1.38mm (resulting in area packing
fraction �= (2⇡/

p
3)(a2/�2)⇡0.03–0.3). Hairs have a tapered thickness profile,

which we measure to compute e�ective diameters and lengths (Supplementary
Information). Hair beds are mounted onto the inner cylinder of a Taylor–Couette
geometry (inner radius Ri =15mm, outer radius Ro =22mm, length
Lcyl =42.2mm; N ⇠104 hairs) and immersed in silicone oil (Gelest, viscosity
⌘=103–104 cPs, density ⇢ =970 kgm�3). For angled hairs, we custom-built
supports that hold the acrylic stock at an angle while laser cutting.

Rheometry.Wemeasure torque T as a function of rotational velocity ! using a
magnetic-bearing rheometer (AR-G2, TA Instruments). We then determine shear
stress ⌧ = (T/2⇡LcylR2

base) and velocity v=Rbase!, where Rbase is the radius of the
base of the hairs. The impedance of undeformed hairs Z0 is determined by
computing the mean of Z in a plateau around ev⇡10�1, and
Z1 = c((R2

out �R2
tip)/(R

2
out �R2

base))Z0, where Rout is the inner radius of the outer
cylinder and Rtip is the radius of the tip of undeformed hairs, and c=0.7 a fit
parameter. All radii are taken with respect to the cylindrical axis of the rheometer.
Velocities v=!Ri correspond to Reynolds number Re=⇢vH/⌘=0.001–2. For
Fig. 2c, rescaled velocity v=k(4⌘L2v/E�a2H)(1�L/H)�3/2, with k=2 a fit
parameter, is computed by using e�ective values of L and a
(Supplementary Information).

Numerics.We numerically solve equation (2) with Mathematica (v. 11.0). We first
guess a constant value for the initial hair height h1 =L. Next, we solve for ✓(s) using

the ‘NDSolve’ function of Mathematica (‘Shooting’ method, starting from an
undeformed hair tip). We then compute h2 with the resulting solution, which is
used as a guess for the next iteration. We perform iterations until hi �hi�1

converges to the third decimal.

Impedance for angled hairs. Introducing the parameter ✓0 introduces extra
trigonometric factors in the following impedance definitions:
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Data availability. The data that support the plots within this paper and
other findings of this study are available from the corresponding author
upon request.
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Drag reduction
To investigate the feedback between hair deformation and fluid
flow, we develop an experimental model system of elastomer hairs
immersed in high-viscosity fluids (Fig. 1; Methods). We mount
hair beds onto the inner rotor of a Taylor–Couette geometry
(Supplementary Fig.1; Methods) and determine shear stress ⌧
as a function of velocity v of the hairy surface. Upon first
glance, rheometry experiments appear to exhibit shear thinning
(Fig. 2a). For low velocities up to 0.01m s�1, shear stress ⌧ scales
linearly with v. But at higher velocities, ⌧ deviates from linearity.
We rule out shear thinning of the fluid because we observe
n
kn
o
o
n
w
lin
n
e
�
ar
cr

i
it

ty at
10,0

�̇
00
=
s
(
�
v
1.
/
I
H
ns
�
te
L
ad,
) >
the
12.5
me

s
as
�1,
ure
w
d
ell
no
b
n
e
lin
low
ear
th
r
e
es
f
p
l
o
uid
ns
’
e
s

˙ =
arises from hair deformation.

To this end, we replace the first boundary condition of
equation (2) with ✓ ✓ . As a result, the quantity ✓ appears in
the impedances Z0,

|s
Ze
=
,
0 =
and

0
Z/Z , as well as the resc

0
aled velocity

ve (Methods). We again solve num
1
erically for impedance. We also

modify our manufacturing process to produce hair beds with a
nonzero anchoring angle ✓0 up to 40� (Methods; Fig. 4c). Di�erent
behaviour emerges depending on the sign of the velocity.
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